阅读:0
听报道
编者按:
当下地球面临的种种危机,令我们总是寄希望于终有一日逃离地球,飞往另一个可宜居的星球,至于我们应该如何到达那个星球以及在我们有限的生命里能否到达,估计没人能给出合理的方案。近年发现的类地行星开普勒452b,与地球大小非常接近,但是它距离地球非常遥远,1400光年,即使我们乘坐当下最先进的飞行器,飞行1400年也到达不了这个星球。
生物狂人克雷格·文特尔在《光速人生》(Life at The Speed of Light)一书中,给了一个很有意思的解决方案: 那就是让“生命”乘坐“时空隧道”以光速飞向另一个星球。不过这里的生命仅指生命密码,由A、C、T、G组成的生命的密码与计算机中的基本语言0和1可以互换,生命密码可以电磁波形式向外太空传输。
至于生命的密码到达另一星球,该如何自动合成,这就是5月29日文特尔研究团队发表在《自然-生物技术》(Nature Biotechnology)上的一项研究提出的可能解决方案。不过其离真正的生命个体合成还非常遥远,目前仅限于遐想空间。梦想是要有的,万一它实现了呢?
撰文 | 田埂 (元码基因)
责编 | 叶水送
● ● ●
长期以来,分子生物学家都希望从设计一段DNA序列到拿到这个序列相关的活性物质,这之间所有的实验完全通过机器来实现。
近日,由克雷格·文特尔(Craig Venter)和丹尼尔·吉布森(Daniel Gibson)开发的Digital-to-Biological Converter(DBC)实现了这一目标,相关研究发表在《自然-生物技术》杂志。据介绍,这是同类工作中,第一篇发表的同行评议论文。
传统的同类实验大概要花费至少一周的时间,由训练有素的实验人员完成。基本操作过程包括:设计需要合成的基因,由合成软件将要合成的基因,拆解成DNA合成仪可合成的短片段。
受到化学合成准确性的限制,目前还是以合成约60~70个核苷酸,通常实验室无法完成DNA合成的工作由商业公司完成,比如合成的基因片段长4000个碱基,那么我们至少需要合成4000/70=58条的单链核苷酸。这个过程通常要花费两三天时间,然后将这些短的单链DNA组装,并通过PCR的方法使其形成双链DNA,再将双链DNA装入到载体质粒里面,通过非细胞(或者细胞)结构的转录和翻译体系进行转录翻译,并最终得具有活性的蛋白。
整个实验过程通常要使用数个设备,如PCR仪、恒温培养箱、凝胶电泳系统和凝胶成像系统、纯化系统等,主要过程包括DNA的合成,组装和扩增,载体的连接,转录和表达等几个重要阶段。
此次设计的DBC集成化程度很高,甚至集成了DNA合成仪,它还采用了2X96的格式进行DNA合成,因此最大的合成通量定在了约为2X96X70=13440个碱基,可简单地理解为13440碱基之内的DNA都可以直接合成。研究者只需要输入设计好的DNA序列,DBC就可以按照既定的程序,从合成短片段的单链DNA开始,一直到最后阶段的蛋白表达,均可集成到一个自动化系统里面,可以说是一键完成了。此外,作者还优化了RNA疫苗的合成、病毒的复制以及噬菌体的产生等可能的使用领域。
但DBC也非横空出世。在这之前,硬件的主要提供商SGI—DNA公司已经有了从基因到克隆的自动化产品,只是集成的功能不如DBC强大。合作方Synthetic Genomics公司旨在人工设计和合成基因组,正如之前文特尔研究组合成的人工生命体Synthia一样,通过化学合成的方法合成基因组,将其导入到去掉染色体的细胞结构中,产生新的生命。真有些强大到没朋友的感觉。
DBC是人类向合成生命探索的一个阶段性成果,在合成生物学实验室推广DBC,将大大加速人工合成基因的效率,加速人工合成生命的发展。不过客观地讲,DBC并非革命性的工作,DBC是将原来需要人工完成的工作自动化、集成化,并没有新的设计思路。
下一阶段,相信任何“人力”也无法阻挡文特尔在合成生命上的脚步,DBC将推进人工合成基因组的发展,帮助人们更好地理解生命的本质问题。没准真的有一天,人类需要太空移民,这项技术可以帮上忙。
相关文章
Digital-to-biological converter for on-demandproduction of biologics. Nat Biotech. 2017.
话题:
0
推荐
财新博客版权声明:财新博客所发布文章及图片之版权属博主本人及/或相关权利人所有,未经博主及/或相关权利人单独授权,任何网站、平面媒体不得予以转载。财新网对相关媒体的网站信息内容转载授权并不包括财新博客的文章及图片。博客文章均为作者个人观点,不代表财新网的立场和观点。