阅读:0
听报道
撰文 | 赵政东(上海科技大学博士研究生、《知识分子》编译小组)
责编 | 陈晓雪
● ● ●
发烧,一般是指由于身体内部原因导致体温高于正常水平的现象。发烧时,机体并没有受到热环境的刺激,为什么体温还会异常升高呢?以病原体引起的发烧为例,细菌或病毒的入侵通常会释放内毒素,诱发强烈的免疫反应,同时出现强烈的产热,进而导致体温的异常升高。在这一过程中,中枢系统是最重要的控制中心。那么,中枢系统是如何控制我们的体温呢?
最近的一系列研究表明,下丘脑对体温的调节有重要作用,尤其是前部的视前区和后部的背内侧下丘脑,分别负责应对热和冷的环境。这些研究中还鉴定了TRPM2、BDNF等参与体温调节的分子,系统推进了对身体温度调节的认识。
下丘脑是体温调节的中枢
大脑是如何在我们“不知不觉”中帮助我们对抗外界温度的剧烈变化呢?早在19、20世纪,人们就认识到下丘脑是体温调节的中枢,但是由于其位于大脑深处,人们以前很难对这些脑区进行精准的操作,最重要的实验证据是一些脑区损毁的实验。简单来说,就是将电极(electrode)插入特定脑区,然后通入较强的电流(如3~5毫安,持续5秒)(1, 2),将特定的脑区损毁后,观察实验动物的体温变化和对冷热环境温度变化的反应。后来,人们还通过大脑局部给药的方法,研究下丘脑在体温调节中的作用。
毫无疑问,传统的一些操作方法简单粗暴,由于人们对大部分脑区的功能尚无全面的认识,直接损毁会对实验动物有意想不到的副作用。现代神经科技的发展,让我们可以利用光遗传技术(Optogenetics,见知识分子光遗传学技术的文章)精准激活下丘脑的神经元,直接观察实验小鼠体温的变化;还可以利用光纤记录法(fiber photometry)等,将小鼠置于“冷室”或者“热板”上,在小鼠自由活动的状态下记录下丘脑神经元的活性。
“前热后冷”的下丘脑
在下丘脑的前部,有一个叫视前区(Preoptic Area,POA)的位置,因位于视神经的前方而得名(如图1所示)。激活这个脑区的一部分神经元,会使小鼠体温出现非常明显的下降,降低幅度可达6摄氏度。如图2左侧所示:红色线代表激活视前区神经元后,小鼠体温的变化,黑色线表示对照组(3, 4)。此时的小鼠,会“趴”在地上,四肢伸展开来(图2右侧)且活跃程度也明显降低,这正是小鼠在热环境下的表现。也就是说,当视前区的这部分神经元被激活后,便相当于“告诉”小鼠:有热刺激来啦!小鼠就开始启动自己的散热程序,虽然真实的环境温度并没有变热,但小鼠体温已经开始下降。
研究者们还利用一种钙离子指示蛋白,将其表达在小鼠大脑中,再利用光纤记录的方法,可以在自由活动的小鼠中记录特定神经元的活性(5),如图3左所示。发现,将小鼠放在“冷室”中时,下丘脑的背内侧部分(Dorsomedial hypothalamic nucleus)的神经元会明显的激活(3)。如下图3所示,C图的红线代表环境温度从25℃降至12℃,E图的绿线代表这一区域的神经元活性在降温的时候会明显的上升。这表明下丘脑的背中侧部分是响应冷刺激的。也就是说下丘脑的这“一前一后”——视前区与背中内侧部分,分别响应了热和冷。有趣的是,研究者还发现这两个脑区存在着一定程度的拮抗作用,即视前区的一些神经元被激活后,反而会抑制后面背中侧下丘脑神经元的活动(3)。
这一系列研究一方面可以帮助我们理解发烧、中暑等疾病的中枢机制;另一方面体温是我们身体代谢的重要方面,从体温这一视角出发,可以发展出针对肥胖等更加安全的干预手段(见王立铭的文章:“燃烧吧,棕色脂肪!”等)。
大脑能感到自身的冷热吗?
2016年9月,德国海德堡大学的Song Kun等人(6)和英国伦敦国王学院的Chun-Hsiang Tan等人(7)分别在《科学》与《自然》发表论文,部分阐明了一个困扰生理学家们几十年的问题:大脑能否感到大脑自身的冷热?
在20世纪60年代的一个研究中,如图4所示,研究人员将一个热电极植入到狗的下丘脑中,发现缓慢冷却下丘脑时,狗会出现血管收缩、颤抖、体温升高等现象(8)。这表明大脑也能感知到大脑自身的冷热变化,即大脑中可能存在内在的温度感受器!然而,几十年过去了,人们对于大脑是否确实存在内在的温度感受器仍抱着巨大的疑问。
这两项研究则发现下丘脑视前区存在一类表达TRPM2(Transient receptor potential cation channel, subfamily M, member 2)基因的神经元。TRPM2是一大类TRP蛋白家族的一员,而TRP蛋白家族在我们人类身上里面有28个成员,大部分成员会在皮肤等外周系统表达,它们是分子温度传感器,帮助我们感知外界的温度变化,有的成员还能感受一些化学物质(9)。例如,有一个成员TRPV1,它既可以感知热,又可以被辣椒素激活,这样我们吃辣的同时会感觉“热”;还有一个成员TRPM8,它既可以感知冷,又可以被薄荷醇激活,所以我们吃薄荷的时候会感到“凉爽”。
不过,TRPM2却很少表达在外周系统,而是表达在大脑中。研究者们激活大脑中表达TRPM2的神经元后,小鼠会表现出明显的散热行为。而且,在小鼠发烧模型实验中,这些神经元会为了缓解体温的异常升高,提供了一种保护机制(6)。同时,TRPM2还是一种分子温度传感器,因此研究者们在下丘脑中发现的这一类TRPM2神经元可能是人们一直努力寻找的大脑内在温度感受器,也就是说,可能找到了大脑感受自身冷热的那个温度感受器。
参考资料:
1.Weidler DJ, Earle A, Myers G, & Sieck GC (1974) Effect of hypothalamic lesions on temperature regulation in hibernating ground squirrels. Brain research 65(1):175-179.
2.Clark G, Magoun H, & Ranson S (1939) Hypothalamic regulation of body temperature. Journal of neurophysiology 2(1):61-80.
3.Zhao Z-D, et al. (2017) A hypothalamic circuit that controls body temperature. Proceedings of the National Academy of Sciences:201616255.
4.Tan CL, et al. (2016) Warm-Sensitive Neurons that Control Body Temperature. Cell 167(1):47-59 e15.
5.Resendez SL & Stuber GD (2015) In vivo calcium imaging to illuminate neurocircuit activity dynamics underlying naturalistic behavior. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 40(1):238.
6.Song K, et al. (2016) The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 353(6306):1393-1398.
7.Tan CH & McNaughton PA (2016) The TRPM2 ion channel is required for sensitivity to warmth. Nature.
8.Hammel H, Hardy J, & Fusco M (1960) Thermoregulatory responses to hypothalamic cooling in unanesthetized dogs. American Journal of Physiology--Legacy Content 198(3):481-486.
9.Venkatachalam K & Montell C (2007) TRP channels. Annu Rev Biochem 76:387-417.
10. BioArt: 上科大沈伟组解析哺乳动物体温调节的机理。
话题:
0
推荐
财新博客版权声明:财新博客所发布文章及图片之版权属博主本人及/或相关权利人所有,未经博主及/或相关权利人单独授权,任何网站、平面媒体不得予以转载。财新网对相关媒体的网站信息内容转载授权并不包括财新博客的文章及图片。博客文章均为作者个人观点,不代表财新网的立场和观点。