阅读:0
听报道
撰文 | 周 炜 图片 | 卢绍庆 课题组 编辑 | 周 炜
将一杯浓盐水持续加热蒸发,过一会儿就会陆续出现晶莹的小颗粒——这是我们熟悉的无机物结晶过程。浙江大学化学系唐睿康教授团队在尝试 “暂停” 这类结晶过程时, “截获” 到一种特别的最初产物——无机离子寡聚体。神奇的是,寡聚体能像高分子材料一样交联聚合起来,进而能形成连续的、大块的无机材料。这意味着,无机材料有望像塑料制品一样整体成型,并变化出各种复杂造型。
相关论文 Crosslinking ionic oligomers as conformable precursors to calcium carbonate 于10月17日刊登在 Nature 上,第一作者是刘昭明博士。研究团队还尝试用这一方法成功修复了碳酸钙单晶、海胆刺和人体牙釉质等无机材料。学界认为,这一方法创造了 “无机离子聚合” 这类新型的反应体系,跨越了无机化学与高分子化学的分界,预示着无机材料将以崭新的结构与性能走进人类生活。
01 结晶过程的“暂停键”
从自然界恢弘奇幻的石灰石溶洞,到让人恨之入骨的肾结石,溶液中的成核结晶现象无处不在,也包含着关于晶体生长的共同秘密:溶质从离子状态到成核结晶,中间状态是怎样的?多年来,尽管有科学家提出过一些假说与理论,但始终没有直接观测证据。 “我们想办法把 ‘中间状态’ 稳定住,再来研究它。”三年前的一个下午,唐睿康和刘昭明讨论起这个问题,但两人的思路不一样。
唐睿康想用高分子稳定。高分子的体量大,可以把成核前的物质像棉被一样包裹起来,实现 “定格”。但他承认,加进去的高分子很难再去除,那么最终得到的是一类有机分子与无机分子的复合物,得不到纯无机物。而刘昭明则想用小分子。 “小分子的个头小,怎么 ‘定’ 得住呢?何其难也!” 唐睿康一开始并不看好刘昭明的想法。
几天以后,刘昭明跑来告诉导师, “暂停键” 找到了——一种叫三乙胺的小分子非常好用。刘昭明说,三乙胺能与碳酸根离子通过氢键发挥“封端”作用;同时又很容被去除,克服高分子包裹法的硬伤。
02 发现“无机离子寡聚体”
三乙胺的加入,让“平铺直叙”的结晶过程变成了一场“赛跑”:溶液中的碳酸根离子既能与钙结合,又能与三乙胺结合,那么谁的速度更快?最终结果是,几个碳酸根离子刚和几个钙离子形成一个“短链”,三乙胺就上来“封”在碳酸根离子的一端,让它无法再与下一个钙离子结合——于是,溶液中充满了被三乙胺“封”住的碳酸钙“短链”,科学家将其称为“寡聚体”。
综合质谱、X射线散射和电子显微技术,科学家终于得以看到“无机离子寡聚体”的真容:3-4个碳酸钙形成一个寡聚体,长度在1.2纳米左右——这是人们第一次发现无机离子寡聚体的存在。
“这个时候我们想,我们的关注点应该不再是‘中间状态’,而是这些寡聚体可以做什么?它们会有什么崭新的性能?在科学上还有什么新的意义?”科学家意识到,这是一个前人还没有探索过的领域。“我们一起冒险吧!”唐睿康对刘昭明说。那一年,刘昭明已经完成了博士的全部学业,正准备去美国从事博士后工作。他决定留下来,和团队一起研究这个问题。
03 连续制造无机材料?
“寡聚体” 的概念来自于高分子化学,它是指少量单体组成的重复单元,可以和单体一样,交联聚合形成连续稳定的网络结构。塑料、橡胶等就是由单体或者寡聚体交联聚合而来的高分子。“它们具有连续的结构,比如一个塑料脸盆,可以看做是一个大的分子。”唐睿康说,由于方便制造和具有一定的强度,塑料与橡胶等已经成为我们生活中不可缺少的材料。
相比之下,通过溶液结晶法制备的无机材料则显得单调,它们往往以大量无序的微小的晶体粉末面貌出现,很难制造出连续结构。“如果我们要造一个完整的碳酸钙(石头)雕像,那么我们先得到大块地质碳酸钙(石头)然后开始切削或者雕刻,而没法像浇筑塑料一样让碳酸钙整体成型。” 刘昭明说。
“无机离子寡聚体”的出现,让科学家看到了无机材料“转型”的希望,一旦去掉溶液中的三乙胺,短促的“碳酸钙寡聚体”就会相互交联聚合起来,形成一个连续结构。通过这一方法,唐睿康团队首先制备了由碳酸钙寡聚体交联而成的无定形块体,在实验室里,尺度可以很方便地达到一厘米左右。通过引导结晶,无定形块体内部会进一步形成有序的结晶结构,进而还能够形成单晶。
碳酸钙第一次以连续结构的形貌诞生于实验室。“它们不再以晶体生长的方式,而更像高分子的方式,交联聚合起来,理论上可以无限‘长大’。”唐睿康说。电子显微镜提供了直接观测证据,碳酸钙寡聚体的交联过程就像一个大型舞会:首先是相近的几个寡聚体牵起手来,逐渐形成一个寡聚体的网络,最终所有的寡聚体都联起“手”来,“跳”成了一曲紧密连续的集体舞。“正因为寡聚体能被稳定,所以就可以被富集或浓缩,交联就在浓缩的状态下发生的。”刘昭明补充说。
04 修复,从不可能到可能
“这个方法很有意义,在复杂形状构建或材料修复方面会很有优势,你们能否做到?” Nature 编辑对这项研究产生了好奇。一次在饭店吃海鲜,刘昭明把海胆的壳带回了实验室,海胆的刺的主要成分是碳酸钙并且具有特定的多级有序结构,研究人员在受损的海胆刺上使用了碳酸钙寡聚体材料,并实现了完美修复。
不仅如此,研究团队还实现了牙釉质修复和碳酸钙单晶的修复。牙釉质是人体最坚硬的部分之一,其97%的成分是磷酸钙晶体。“磷酸钙的粉末早已有之,但是向缺损处撒磷酸钙粉末,是没法修复的。”唐睿康说,牙釉质是目前最难修复的生物组织之一,临床上还没有完美修复的方法。而采用磷酸钙离子寡聚体的修复材料,能让牙釉质在48小时之内长出2.5微米的修复层,且与被修复组织完美贴合,实现无缝无痕修复。
“在无机离子的寡聚体阶段,材料就像沙子,具有一定的流动性,此时易于形成各种造型;而当它们交联成有序的无机离子高分子,这种材料就具有连续性,并具有一定的强度。”唐睿康说。目前,人类已经能模仿天然橡胶做出人造橡胶、塑料等各种性能、形状丰富的高分子材料;而无机材料的应用场景有很大局限。
而大自然是运用无机材料的高手,它向展示许多无机材料连续成型的精美作品:牙齿、骨骼……支撑起一个千变万化的自然世界。在印度洋浅海的海底,生活着一种叫海蛇尾的海星近亲,哈佛大学的科学家曾经发现,它浑身上下遍布的“眼睛”竟是一整块连续的碳酸钙材料。人类也能做出这样宏观连续又精致材料的材料吗?
“我们提供了一种方案,并且看到了曙光。” 唐睿康说。
相关论文:
https://doi.org/10.1038/s41586-019-1645-x
文章来源于求是风采
话题:
0
推荐
财新博客版权声明:财新博客所发布文章及图片之版权属博主本人及/或相关权利人所有,未经博主及/或相关权利人单独授权,任何网站、平面媒体不得予以转载。财新网对相关媒体的网站信息内容转载授权并不包括财新博客的文章及图片。博客文章均为作者个人观点,不代表财新网的立场和观点。