财新传媒
位置:博客 > 知识分子 > 新研究显示土星可能有一个更大的弥散核?

新研究显示土星可能有一个更大的弥散核?

通过将引力数据与土星环震的观测数据相结合,提供了对土星内部结构的新认知 | 图源:pixabay.com
 
- 导 读 -
 
行星的核藏着它们是如何形成和演化的秘密。而最近,天文学家们发现土星的核可能占到其半径的60%,而且还不像地球一样有清晰的界线。这意味着什么?天文学家又是如何研究看不见摸不着的行星核的?
 
撰文 | 蔡飏杨(亚利桑那大学理论天体物理博士在读)
 
责编 | 王一苇
 
美国东部时间8月16日《自然·天文学》(Nature Astronomy)上发表的一篇论文指出,土星环的震荡更新了人们对于土星内部结构的认知。卡西尼号土星探测器的数据显示,土星有一个缺乏清晰边界的弥漫核,这一发现限制了土星形成和演化的可能方式。[1]
 
巨行星的内部结构无法直接观测,天文学家们通常需要借助绕其旋转的探测器,再研究其引力场的详细构形来确定结构。然而,行星核(行星最中心部分)对行星引力场造成的扰动十分微弱,这会限制确定其内部结构时所能达到的精度。一般认为,土星这个气态巨行星有一个金属核,核周围有一个主要由氢和氦组成的包层。
 
上述论文作者、加州理工学院教授 Christopher Mankovich 和 Jim Fuller 研究了土星,通过将引力数据与土星环震的观测数据相结合,更新了人们对土星内部结构的认知。
 
两位研究者发现,土星核的大小一直延伸至土星半径的约60%,显著大于之前的估算,并且土星核是由混合了氢、氦的弥漫物质与重金属共同组成,核与包层之间没有清晰的界限。这些信息给土星本身的演化历史提供了新的限制条件。[2]
 
行星核隐含行星演化历史
 
太阳系中每一个行星都存在一个核心。除此之外,行星的内部通常是一个明显的分层结构。以我们生活的地球为例,地球的核心分固态内核心和液态外核心,均主要由铁和镍组成。正是液态核心的流动产生了地磁场,保护我们免受宇宙射线辐射。核心外是一层柔软的地幔再包裹上一层坚硬的地幔,而最外面是一层薄薄的地壳。整个地球的内部就像洋葱一样,剥开一层又一层。[3]
图源 :wikipedia.org
 
对行星内部结构的研究也有助于揭示行星本身的演化历史。
 
以太阳系为例,早期太阳系就是一个混沌的尘埃盘。在引力作用下尘埃逐渐聚集成团,如滚雪球一般在绕中心的轨道上 “扫荡”,最后形成原始的行星。
图源 | ALMA (NRAO/ESO/NAOJ); C. Brogan, B. Saxton (NRAO/AUI/NSF)
 
大量的引力势能在这样的过程中得到释放,同时太阳系早期也有大量的辐射性元素。这些能量最后都变成了行星的内部热量,让岩石变得柔软甚至于处于液态的熔融状态,这样行星内部的物质就具有了很好的流动性。在引力的作用下,密度低的物质往上浮,密度大的物质往中心下沉。就像你把不同液体混合在一起静置一段时间,最终不同的液体会分开,一种液体占据一层。
图源 | sohu.com
 
如何剥开你的心?——行星结构研究
 
1797年,英国科学家亨利·卡文迪许 (Henry Cavendish)——就是测量出万有引力常数那位卡文迪许,计算出地球的平均密度大约是水的5倍多 [4]。到今天,相信任何具有高中物理知识的朋友都能完成这个工作。这密度看上去似乎并不大,但由于地表的岩石密度基本上不会超过水的三倍左右,可以推测,地球内部的密度要大得多。限于当年的科技水平,卡文迪许没法更细致地研究地球内部。之后在1898年,俄罗斯地球物理学家维切特(Wiechert)推测地球的组成与铁陨石类似,以此建立了一个以铁和镍为核心的地球内部模型 [5]。
 
真正的突破是在1906年,英国地理学家理查德·迪克森·奥尔德姆(Richard Dixon Oldham)通过对地震波中P波的观测探测到了地球核心的存在 [6]。之后几十年的地震学的研究帮助科学家清晰的确认了地球的内部结构。地震会在地层中产生两种地震波——横波(S波)和纵波(P波),这两种波在同种介质中传播速度不同,同时这两种波在物质的分界面上也会发生反射和折射。在全球对地震波进行监测就可以推算出地球内部的分层结构。
 
所以,我们能对地球的结构了解得这么清楚,得益于我们就生活在地球之上。不过,哪怕是这样,我们至今没法直接对地球的结构进行探测。毕竟,目前人类最深的钻井——科拉超深钻井 [7],也才不过一万多米深,最多刚刚打穿地壳(地壳的厚度大约在5~70千米之间)。
 
对于地球以外的行星,我们基本无法登陆,就只能采取更加间接的方法去推测其内部结构。要探测到内部的信息,就一定需要搜集到从内部传出来的信号。既然地震波不能用了,电磁波也无法穿透厚厚的地层,那就只有用万物皆有的引力来搜集信息了。
 
 
真空中的引力场满足拉普拉斯方程。给定边界条件,求解这个方程就能得到行星的引力场分布。这个方程的解可以用球谐函数展开,最后得到的结果就是均匀球体的引力场外加上无穷多修正项。这些修正项其实就是对行星的不均匀性的描述,越高级的项影响越小。实际操作中只需要考虑前几项就够了。
 
那么,只要我们发射探测器对行星周围的引力场进行测量,根据数据与方程进行拟合,就能确定修正项的参数,从而确定行星的引力场。根据引力场的分布我们就能大致推测行星的质量分布,以此确定行星的内部结构。
 
比如2004年NASA向水星发射的 “信使号” 探测器就配备了非常精密的仪器用于确定探测器的速度和位置。通过探测到的速度和位置就能算出其受到的引力大小,再排除太阳的引力影响就能确定行星的引力场。我们也因此得到了更多的关于水星内部结构的信息。[8]
 
除此之外,探测行星的磁场,观察表面的火山活动等方法也能获得一部分的内部信息,但是都没有直接观测引力场获得信息那么全面,这里就不一一赘述了。
 
我听到你 “心脏跳动” 的声音——通过对土星环的观测得到的信息
 
引力场的分布对行星核心的信息并不是特别敏感,因此通过引力场分布能很好的确定行星靠外的结构,但是对于其内部结构的了解十分模糊。
 
相对于其他行星来讲,土星有一个特别的地方就是它有一圈由岩石和冰块组成的环。土星自身的引力场当然也会影响环内物质的分布。NASA在1997年发射升空的 “卡西尼号”,我想大家并不陌生。那张著名的由土星回望地球的照片便是它所拍摄。“卡西尼号” 在土星环上发现了一些特别的波动,这些波动就像是水中的涟漪一样在环上传播。经过初步的计算,这些波动不可能是土星卫星的引力摄动造成,只能是土星内部的引力影响而成 [9]。
“卡西尼号”从土星回望地球照片 | 图源:NASA
 
土星物质各种类型的非均匀分布能让引力场产生不同的变化,数学上可以用不同的函数来表达不同的分布模式,将每种不同的分布模式叠加起来就能得到总的引力场分布,这就是上面提到过的球谐函数展开的原理。不同的模式就能让土星的引力场产生不同模式的微小波动,这个波动就会在土星环上产生密度波,就像水中的涟漪。用观测数据和理论模型进行拟合就能确定土星环上的这些波动具体是由何种模式产生的。找出了所有可能的模式,将他们叠加起来就能得到更精确的引力场的信息。结合探测器所观测到的土星的引力场,就能更加精确的确定土星内部的质量分布。
 
事实上,本文开头提到的论文就是用了这种方法,对土星的内部结构做出了比以前更加精确的预测。土星内部结构导致的引力场波动被土星环记录下来进而被我们观测到,就好像是我们 “听” 到了土星 “心脏跳动” 的声音。
 
上述论文中,作者们最后得出结论——土星的内核弥漫到了土星半径的60%,而且这个核心可能是逐渐过渡到外层,和外层之间没有非常清晰的界限。
 
我们都有一颗独特的 “心”
 
——太阳系其他行星结构研究情况 [3]
 
水星
 
结合NASA 2004 年发射的信使号(MESSENGER)探测器的观测,研究者们目前认为水星有一个非常大的内核,大约占据整个水星半径85%。因此也有人认为水星在演化过程中丢失了大量外壳物质。水星外层主要是以硅为主的地壳和地幔。而水星的 “心” 可能有一个三层结构——最外层是固态的硫化铁,中层是液态,核心可能是固态。
 
金星
 
就目前所知的信息,金星的内部结构与地球十分相似。不愧是地球的 “好兄弟”。
 
火星
 
火星半径大约是3300km。其拥有一个高密度的核心,可能半径为1500~2100km。包裹着核心的是一层1240~1880km厚的岩石地幔。火星的地壳大约10~50km厚,由铁,镁,铝,钙,钾等元素组成。
 
木星
 
木星主要由氢和氦组成。表面就是氢气和氦气形成的大气。往深处走因为巨大的压力,氢和氦会呈液态。有理论认为,在木星的更深处,氢的电子会因为高温高压而被剥离,由于木星的自转会因此形成强大的电流以维持木星当前强大的磁场。至于木星的核心组成目前还不得而知,推测其可能由铁和硅的矿物组成,温度可达5万摄氏度。
 
土星
 
和木星类似,土星主要由氢和氦构成。其核心可能是金属铁和镍,核心外包裹着一层高密度的岩石和冰块。往外是氢和氦的液态海洋,最后是氢和氦形成的大气。
 
天王星和海王星
 
因为距离甚远,这两个行星的观测数据相对来说要少很多,知道的也少很多。这两个星球可能都是一个80%质量由固态或液态的水、甲烷、氨气所组成的大冰球,同时有一个很小的岩石核心。
 
随着人类科技的发展,随着仪器的精度不断提高,我们能够越来越精准地观测太阳系内的各个天体,也能发现更多的细节。近年来火爆的引力波测量理论上也可以用来对各个行星的引力场进行更精确的测量,只不过是技术和成本的问题。我们对太阳系观测的越深入,也就能对我们星系的演化历史掌握的更清楚,大概也就能更好的回答出“我们从何而来”这样的问题。
 
参考资料:
 
[1]https://www.nature.com/articles/s41550-021-01448-3
 
[2]Mankovich, Christopher, and Jim Fuller. "A diffuse core in Saturn revealed by ring seismology." arXiv preprint arXiv:2104.13385 (2021).
 
[3]https://solarsystem.nasa.gov/planets/earth/in-depth/
 
[4]Cavendish, H. (1798). "Experiments to determine the density of Earth". Philosophical Transactions of the Royal Society of London. 88: 469–479.
 
[5]Wiechert, E. (1897). "Uber die Massenverteilung im Inneren der Erde" [About the mass distribution inside the Earth]. Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematische-physikalische Klasse (in German). 1897 (3): 221–243.
 
[6]Oldham, R. D. (1 February 1906). "The Constitution of the Interior of the Earth, as Revealed by Earthquakes". Quarterly Journal of the Geological Society. 62 (1–4): 456–475. doi:10.1144/GSL.JGS.1906.062.01-04.21. S2CID 129025380.
 
[7]https://www.bbc.com/ukchina/simp/vert-fut-48625167
 
[8]Smith, David E., et al. "Gravity field and internal structure of Mercury from MESSENGER." science 336.6078 (2012): 214-217.
 
[9]Hedman, M. M. & Nicholson, P. D. Kronoseismology: using density waves in
 
Saturn’s C ring to probe the planet’s interior. Astron. J. 146, 12 (2013).



推荐 0